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MOTIVATION

• Over 4.2 million deaths 
per year linked with air 
pollution (11.6% of all 
deaths)

• 2-5% of GDP spent on 
air quality related 
diseases globally

• Only 1 in 10 people 
breathe air that is safe 



Faculty of Science

• Professional-grade measurement towers
• Provide highly accurate environmental data
• But very expensive and laborious (to maintain), 

typical cost over a ($/€/£)
• Large and bulky ➔ restricted to fixed locations

• Industrial sensors
• Cost in tens of thousands
• Partially mobile
• Lower measurement accuracy

• Low-cost sensors
• Cost < 1000 $/€/£
• Highly inaccurate
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STATE-OF-THE-ART

Source: N. H. Motlagh, E. Lagerspetz, P. Nurmi, X, Li, S. Varjonen, J. 
Mineraud, M. Siekkinen, A. Rebeiro-Hargrave, T. Hussein, T. Petäjä, M. 
Kulmala, S. Tarkoma, “Toward massive scale air quality monitoring”, IEEE 
Communications Magazine, 58(2), pp. 54-59, IEEE, 2020

Professional

Low-cost

Industrial
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VISION FOR AIR QUALITY MONITORING

Source: N. H. Motlagh, E. Lagerspetz, P. Nurmi, X, Li, S. Varjonen, J. Mineraud, M. Siekkinen, A. Rebeiro-Hargrave, T. Hussein, T. Petäjä, M. Kulmala, S. Tarkoma, “Toward massive scale air quality 
monitoring”, IEEE Communications Magazine, 58(2), pp. 54-59, IEEE, 2020

Dense 
observation 
networks that 
combine 
different types of 
sensors
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• Professional grade (and industrial) sensors have limited spatial 
and temporal coverage due to their high cost
• Analysis necessarily limited to aggregated information instead of 

providing details of localized pollutant distributions
• But pollutant concentrations can vary drastically even within 30 

meter distance ➔ demand for high spatial and temporal 
resolution
• Need around 1000 sensors / square mile or tens of thousands of 

sensors / city district
• Achieving accurate yet dense information only possible by 

combining different types of sensors!
• How to ensure sufficient accuracy?
• How to maintain large-scale deployments?
• How to deploy and design sensors?
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WHY NEW VISION? 

Source: N. H. Motlagh, E. Lagerspetz, P. 
Nurmi, X, Li, S. Varjonen, J. Mineraud, M. 
Siekkinen, A. Rebeiro-Hargrave, T. 
Hussein, T. Petäjä, M. Kulmala, S. 
Tarkoma, “Toward massive scale air 
quality monitoring”, IEEE Communications 
Magazine, 58(2), pp. 54-59, IEEE, 2020
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• High resolution air quality is highly important for 
emerging applications
• Localized monitoring of pollutants to identify emission 

hotspots or other areas of variation
• Green routing to suggest routes that avoid heavy pollution 

intake
• Detection and analysis of pollutants inside public 

transportation vehicles
• As well as analysing overall impacts of pollutants

• For example, development of alternative / new air quality 
indexes
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APPLICATION AREAS 
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• Powerful way for increasing coverage is to equip inhabitants with 
sensors (or to integrate sensors on their personal devices)
• Allows estimating personal impact better
• But data also biased toward personal routines and retention an 

issue (i.e., people stop using devices)
• Examples on the right sensors developed as part of the 

MegaSense programme at University of Helsinki
• Sensors collaboration between industry and academia
• Collect particulate matter (PM), gaseous pollutants, and diverse 

environmental variables
• Can be attached to a bag or other equipment with a simple clip
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PORTABLE SENSORS AND 
COVERAGE

Source: Motlagh, N. H., Zaidan, M. A., Fung, P. L., 
Lagerspetz, E., Aula, K., Varjonen, S., Siekkinen, 
M., Rebeiro-Hargrave, A., Petäjä, T., Matsumi, Y., 
Kulmala, M., Hussein, T., Nurmi, P., & Tarkoma, S. 
(2021). Transit pollution exposure monitoring using 
low-cost wearable sensors. Transportation Research 
Part D: Transport and Environment, 98, 102981.
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• Example from monitoring personal exposure to 
pollutants using portable sensors

• Pollutant concentrations vary depending on
• Mode of transport
• Route / environment
• Location inside the vehicle

• Location within vehicle can result in up to 25% 
increase in daily exposure
• This compared to dedicated sensors in each vehicle
• Using scientific measurement stations would result in 

even coarser estimates

11/10/2022

Toward Large-Scale Air Quality Monitoring 
Petteri Nurmi
petteri.nurmi@helsinki.fi
http://pds.cs.helsinki.fi/ 8

WHY COVERAGE MATTERS?
Source: Motlagh, N. H., Zaidan, M. A., Fung, P. L., 
Lagerspetz, E., Aula, K., Varjonen, S., Siekkinen, 
M., Rebeiro-Hargrave, A., Petäjä, T., Matsumi, Y., 
Kulmala, M., Hussein, T., Nurmi, P., & Tarkoma, S. 
(2021). Transit pollution exposure monitoring using 
low-cost wearable sensors. Transportation Research 
Part D: Transport and Environment, 98, 102981.
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• Localized variations in air quality ➔ need fine-grained coverage to capture these
• Industrial sites result in dispersion of pollutants ➔ need to know their pattern to 

estimate their impact to other areas

11/10/2022

Toward Large-Scale Air Quality Monitoring 
Petteri Nurmi
petteri.nurmi@helsinki.fi
http://pds.cs.helsinki.fi/ 9

WHY COVERAGE MATTERS?

Source: Motlagh, N. H., Irjala, M., Zuniga, 
A., Lagerspetz, E., Rantala, V., Flores, H., 
Nurmi, P. & Tarkoma, S. (2022). Toward 
Blue Skies: City-Scale Air Pollution 
Monitoring using UAVs. IEEE Consumer 
Electronics Magazine.
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• Coverage can only be increased with 
sensors that are cheaper and easier to use

• These tend to have lower accuracy than 
what scientific measurement devices provide

• Many sources of error can influence the 
measurements
• Air quality: cross-pollutant sensitivity, weather 

conditions, drift, characteristics of the location 
• Need ways to reduce errors and to 

understand what kind of errors happen
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SENSOR ACCURACY

Source: Lagerspetz, E., Motlagh, N. H., Zaidan, M. A., Fung, P. L., Mineraud, J., 
Varjonen, S., Siekkinen, M., Nurmi, P., Matsumi, Y., Tarkoma, S. & Hussein, T. (2019, 
July). Megasense: Feasibility of low-cost sensors for pollution hot-spot detection. In 2019 
IEEE 17th International Conference on Industrial Informatics (INDIN) (Vol. 1, pp. 1083-
1090). IEEE.
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• The previous slide characterized accuracy of individual 
sensors compared to reference stations

• What happens when tens or hundreds of sensors are 
deployed?

• Our recent work explores this question in dense 
deployments of low-cost sensors
• Deployments in Nanjing, China, cover roughly an area of 

55km2 with 1.1 million inhabitants
• 126 low-cost sensors
• 13 reference sensors
• 6 different types of areas within this region (e.g., roadside, 

construction, monitoring sites)

12/10/2022

Toward Large-Scale Air Quality Monitoring 
Petteri Nurmi
petteri.nurmi@helsinki.fi
http://pds.cs.helsinki.fi/ 11

ACCURACY IN LARGE-SCALE DEPLOYMENTS

Source: M. A. Zaidan, Y, Xie, N. H. Motlagh, B. Wang, W. Nei, P. 
Nurmi, S. Tarkoma, T. Petäjä, A. Ding, M. Kulmala, ”Dense Air 
Quality Sensor Networks: Validation, Analysis and Benefits”, 
IEEE Sensors, 2022. 
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Three LCSs validation methods:
• Reliability investigation to evaluate all LCSs 

observe if they provide reliable measurements as a 
whole 

• Accuracy tests on few of LCSs nearest to the 
reference stations 
‒ PM2.5 measurements are similar with the PM 

concentrations measured at 𝑅10

• Failure and anomaly detection on individual LCSs
to evaluate if they generate reliable air quality
‒ Almost all sensors for CO and SO2 are in anomaly or in 

failure modes ➔ filtered out
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VALIDATION METHODS

Individual analysis: sensors failure and anomaly

Well functioning Failure or anomaly

Measurements of PM2.5 from the 3 nearest LCSs
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• Median values largely similar for reference sensors 
(R) and low-cost sensors (L)

• Also variation (MAD) similar 
• Mean and variance contain significantly more 

variation for low-cost sensors ➔ measurements 
contain outliers

• Anomalies typically continuous periods where 
something unexpected happens
• Detected by modelling the distribution of pollutant 

values at nearest reference station and determining 
a probability threshold

• Values exceeding threshold for a long period 
extremely unlikely and considered outliers

• Weibull distribution used for sensor measurements, 
chosen using AIC weights
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ACCURACY IN LARGE-SCALE DEPLOYMENTS
SELECTED RESULTS
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• Most sensor-enabled devices integrate multiple 
sensors ➔ possible to use different sensors to 
estimate and mitigate errors

• Machine learning based calibration builds on this 
idea, learns a correspondence function that can be 
used to “correct” measurements

• Requires co-locating inaccurate sensors close to a 
“reference” (or gold standard) measurement 
instrument to learn the mapping
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IMPROVING ACCURACY: MACHINE LEARNING 
BASED CALIBRATION

Source: Aula, K., Lagerspetz, E., Nurmi, P., & Tarkoma, S. (2022). 
Evaluation of Low-Cost Air Quality Sensor Calibration Models. ACM 
Transactions on Sensor Networks (TOSN).
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• Periodically co-locating sensors next to each other not 
feasible in practice ➔ need for alternative methods
• Preferably allow sensors to operate for long periods of 

time without manual intervention 
• …co-locating sensors are makes little sense as then could 

just use the reference station
• Opportunistic sensor calibration 

• collects measurements opportunistically whenever a 
device is close to a reference station 

• shares training data from these opportunistic encounters 
to learn a global calibration model
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OPPORTUNISTIC SENSOR CALIBRATION
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• Sensors deployed in several areas of Helsinki and 
Beijing

• “Triangulation”: areas with different characteristics, 
different spatial and temporal scales for deployments
1. Shipping district with congested traffic
2. Residential area away from industry and traffic
3. Mixed residential and university area close to 

congested roads
4. Two deployments at business district areas in Beijing
• 100+ sensors in total across all areas
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EXPERIMENTS FOR 
SENSOR CALIBRATION
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1. Machine-learning based calibration using only 2.5 
days of data (from a co-located deployment) 
reduces errors of low-cost sensors by 56%

2. Small amounts of training data sufficient for 
learning calibration models, quality of 
measurements more important than quantity

3. Mixing data between industrial and low-cost 
sensors feasible for calibration, can halve the error
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OPPORTUNISTIC SENSOR CALIBRATION: 
RESULTS
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• Generally best results tend to come with 
models that combine different structures

• Most urban air quality data manifests linear 
and non-linear dependencies

• Our work generally uses deep learning 
models that combine 
• convolutional layers (feature extractors)
• recurrent layers to capture temporal 

dependencies
• fully connected layers to obtain final outputs

• Sensor calibration a generic problem with 
lots of application areas
• Current work covers sensing for air quality, 

heart rate, and thermal imaging
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SENSOR CALIBRATION

Source: Malmivirta , T , Hamberg , J , Lagerspetz , E , Li , X , Peltonen , E , Flores , H & Nurmi , P
2019 , Hot or Not? Robust and Accurate Continuous Thermal Imaging on FLIR cameras . in
2019 IEEE International Conference on Pervasive Computing and Communications
(PerCom) . IEEE , IEEE International Conference on Pervasive Computing and
Communications , Kyoto , Japan , 11/03/2019 . https://doi.org/10.1109/PERCOM.2019.8767423
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• Model selection non-trivial issue: deep learning models 
can have excellent performance but tend to overfit on 
the distribution of the data
• Figure on the right highlights how changes in data 

distribution impact deep learning vs. traditional regression 
methods (using WiFi interference detection as example)

• Transfer learning a potential way to improve 
performance
• CrossSense: train separate “expert” models for different 

environments, select the best matching expert to improve 
performance
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SENSOR CALIBRATION: 
OVERFITTING

Source: Pulkkinen , T , Nurminen , J K & Nurmi , P 2021 , 
Understanding WiFi Cross-Technology Interference Detection in the
Real World . in 2020 IEEE 40th International Conference on 
Distributed Computing Systems (ICDCS) . IEEE International 
Conference on Distributed Computing Systems , IEEE, pp. 954-964
https://doi.org/10.1109/ICDCS47774.2020.00061

Source: Zhang, J., Tang, Z., Li, M., Fang, D., Nurmi, P., & 
Wang, Z. (2018, October). CrossSense: Towards cross-site 
and large-scale WiFi sensing. In Proceedings of the 24th 
Annual International Conference on Mobile Computing and 
Networking (pp. 305-320).
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• Machine learning models can lose performance over time 
as sensors lose accuracy or the environment changes
• Figure on the right uses WiFi sensing to illustrate how 15cm 

change in sensor location can result in 75% drop of accuracy
• Requires re-training ML models and/or feeding new data into 

the training (e.g., federated learning) but how to detect this?
• RISE: system for detecting model drift

• Examines changes in the output of a ML model (by looking at 
class probability vector)

• Compares data to those used during training
• If either detector rejects a sample ➔ update model
• 1-2 samples (1.12 on average) needed to retrain model to 

environmental changes!
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SENSOR CALIBRATION: DRIFT

Source: Zhai, S., Tang, Z., Nurmi, P., Fang, D., Chen, X., & Wang, 
Z. (2021, October). RISE: Robust wireless sensing using 
probabilistic and statistical assessments. In Proceedings of the 27th 
Annual International Conference on Mobile Computing and 
Networking (pp. 309-322).
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FOR MORE ON LOW-COST AIR QUALITY 
MONITORING AND CALIBRATION…

Concas , F , Mineraud , J , Lagerspetz , E , Varjonen , S , Liu , X , 
Puolamäki , K , Nurmi , P, Tarkoma , S, “Low-Cost Outdoor Air Quality 
Monitoring and Sensor Calibration: A Survey and Critical Analysis” , ACM 
Transactions on Sensor Networks (TOSN) , vol. 17, no. 2, 20, pp. 1-44 . 
https://doi.org/10.1145/3446005

…check our survey article in ACM TOSN
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• Practical deployments must work on highly different 
environmental conditions

• Regulations place strict requirements on monitoring that include 
robustness to variations in environmental conditions
• E.g., air quality: need to operate robustly against low and high 

concentrations and in different humidity & temperature 
• This needs to be explicitly modelled in the machine learning 

solutions that operate on data
• Autocorrelation in data ➔ standard evaluation models incorporate 

temporal dependencies that give overly optimistic views
• Distribution of data varies over time ➔ deployment may see data 

that is not visible during testing / training at all

11/10/2022

Toward Large-Scale Air Quality Monitoring 
Petteri Nurmi
petteri.nurmi@helsinki.fi
http://pds.cs.helsinki.fi/ 22

BEYOND ACCURACY: 
ROBUSTNESS & CONSISTENCY

Source: Aula, K., Lagerspetz, E., Nurmi, P., & 
Tarkoma, S. (2022). Evaluation of Low-Cost 
Air Quality Sensor Calibration Models. ACM 
Transactions on Sensor Networks (TOSN).
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• Robustness of ML models for environmental data can 
be improved by breaking dependencies 

• Diverse data selector a method for creating partitions 
that help to enforce robustness
1. Partition data into continuous segments (e.g., a week 

or a month)
2. Score segments according to selected criteria (e.g., 

distributional difference or magnitude of values)
3. Select partition with highest score and assign it to a 

pool of measurements
4. Recompute segment scores and repeat until no more 

segments available
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IMPROVING ROBUSTNESS Source: Aula, K., Lagerspetz, E., Nurmi, P., & 
Tarkoma, S. (2022). Evaluation of Low-Cost 
Air Quality Sensor Calibration Models. ACM 
Transactions on Sensor Networks (TOSN).
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• Diverse data selector results in data splits that are 
representative of actual environmental variations

• Standard evaluation methods give overly optimistic 
views of performance

• Diverse data selector better at assessing 
performance in practical deployments

• Training with diverse data can significantly improve 
robustness of machine learning models

• Main effect comes from increasing distributional 
difference between measurements but also having 
control over data selection helps
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IMPROVING ROBUSTNESS:
SELECTED RESULTS 

Source: Aula, K., Lagerspetz, E., Nurmi, P., & Tarkoma, S. 
(2022). Evaluation of Low-Cost Air Quality Sensor 
Calibration Models. ACM Transactions on Sensor Networks 
(TOSN).
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MONITORING INDOOR ENVIRONMENTS 
USING SMART PLANTS Source: Zuniga, A., Motlagh, N. H., Flores, H., & Nurmi, P. (2022). Smart 

Plants: Low-Cost Solution for Monitoring Indoor Environments. IEEE 
Internet of Things Journal.

• Smart plants offer an easy to deploy and maintain 
solution for sensing indoors air quality

• Supplement other forms of infrastructure used to 
monitor, i.e., thermal comfort, workplace productivity

• Besides the sensors for monitoring plants growth, 
smart plants can integrate CO2 and temperature 
sensors to measure environmental conditions

• The sensors in a plant container results in similar 
values as using a dedicated sensor device in 
different conditions

• Watering the plants has not a significant effect on 
the measurements. 

IEEE INTERNET OF THINGS JOURNAL 2022 3

Netatmo indoors module
(CO2 + Humidity + 

Temperature + Barometer)

Coleus 
scutellarioides

Hatiora
salicornioides

Testing Place 2
Testing Place 1

4.7 m

2.8 m

Sensing Area Smart Plant Prototype

Fig. 1: Experimental Setup of Smart Plant Prototype.

tensive experiments that consider overall CO2 accumulation
estimation, occupancy detection, and face mask use detection
as representative examples of applications that can be imple-
mented by re-purposing smart plant sensors. We next describe
our experimental setup and measurements in detail.
Plants. Weconsider plants that arecommon and representative
of ornamental plants for indoor spaces: (i) coleus scutellari-
oides (common name: painted nettle, average height: 45cm,
hardiness: USDA Zone 10-11, water needs: moderate to high)
and (ii) hatiora salicornioides (common name: bottle cactus,
average height: 40cm, hardiness: USDA Zone 10-11, water
needs: low). Both plants are easy to grow and care, their size
facilitate placing them as potted desk plants. The greenery
was planted into separated pots (11.5cm x 11cm). The plants
covered the sensors used for monitoring to ensure a realistic
monitoring context, and the height of the plants from the
top of the pot was: coleus, scutellarioides: 22.5cm, hatiora
salicornioides: 26.5cm.
Apparatus. We built a simple prototype container that inte-
grates a Netatmo portable weather station with a plastic plant
container. The size of the weather station is 15.5cm x 4.5cm
and it uses a dedicated power supply via a Mini-USB in-
terface. WiFi connection is required for device configuration
and downloading the samples on a smartphone. We rely on
the weather station as it allows accessing the measurements
through a separate app and a web dashboard as most com-
mercial off-the-shelf plant containers do not currently offer
separate programmable access.
Sensors. Indoor air quality wasmeasured through theNetatmo
station. The weather station collects sensor measurements
for carbon dioxide (CO2, range: 0 to 5,000 ppm, accuracy:
± 50 ppm), temperature (T, range: 0°C to 50°C, accu-
racy: ± 0.3°C), barometric pressure (P, range: 260mbar
to 1.260mbar, accuracy: ± − 1mbar) and relative humidity
(RH%, range: 0 to 100%, accuracy: ± 3%) sensors. The
sensors were properly calibrated following the manufacturer’s
guidelines before each test.
Environment. The sensing area corresponds to a space with
dimensions 2.8m x 4.8m inside a studio (one room) apart-
ment; see Figure 1(a) for an illustration. The characteristics of
the area are representative of common living or office space.
The smart plant prototype comprises of the plants and the
weather station (see Figure 1(b)). The station was covered

and placed between the desk plant container (pot) providing
air quality measurements around theplants. The location of the
persons during thesampling included two placeswith different
distances relative to theplant: (i) awork desk at 80cm distance
(position 1) and (ii) a dining table at 380cm distance (position
2). We also separately characterise the levels of CO2 when
the room is empty. We denote the mean value of the space
when it is unoccupied as L i and consider this value as a
reference point. Between experiments, we include aminimum
break of 30 minutes and ensured the CO2 level stabilises
to the reference value L i before further measurements are
collected. Having a minimum gap of 30 minutes ensures that
themean CO2 level is within the reference valuewith a 97.5%
confidence level. We also characterised the time necessary to
reach the saturation point of CO2 produced by an individual,
Ls. In each experiment, the sensors sample measurements
every 5min over a 210min period. This includes an initial
30min period for verifying the CO2 levels are stable (i.e.,
correspond to L i ), a 120min saturation period during with
the CO2 levels increase from L i toLs, and a 60min grace
period at the end to verify that the CO2 decrease back to L i .
Measurements. Samples were collected in three different
experimental conditions. We first carry out an experiment
where we collect measurements separately from the smart
plant and the weather station for (i) a 1 day period with
one occupant following a normal daily routine (e.g., working,
eating, resting) at the apartment and (ii) a 6 hour period
with no occupants at the apartment. The experiment allows
estimating how well the sensors in the container capture air
quality variations compared to using a separate device that is
installed in theenvironment. Second, wecollect measurements
for a 3 hour period for each different testing place and one
occupant (male, 38 years old) and evaluate the variation in
the measurements due to distance. We repeat the experiment
considering two occupants (a male and a female, 38 years old
both) to evaluate the effect of having more than one person.
Finally, we analyse the effect of face masks by having one
or both participants wearing FFP2 face masks and collecting
measurements for a 3 hour period at testing position 2 (dining
table). Prior to starting the measurements, we always ensured
that the mean CO2 level matches the reference value L i over
a 30 minute period.

IV. RESULTS AND ANALYSIS
A. Characterising Measurements
Figure 2 contrasts the results when the sensor is integrated

with the plant container and when it is used separately to
measure CO2 level variation. Figure 2(a) presents the result
of Spearman’s ⇢s between different factors. The correlation
between the smart plant sensor and the dedicated sensor is
consistently significant. This holds especially for variable pairs
that are expected to be strongly correlated: CO2-temperature
(⇢ > 0.7) and barometric pressure-relative humidity (⇢ <
− 0.9). The decrease in correlation for some variables results
from different weather conditions during sampling (i.e., a
sunny day can increase the temperature in the sensing area
compared to a cloudy day). These results indicate that placing

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3188475

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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MODELLING FACE MASK USE AND 
OCCUPATION ESTIMATION

• Smart plants can support coarse-grained classification 
to distinguish diverse indoor environment conditions

• The analysis focus on the speed of change in the CO2
levels, as it correlates with the number of people in a 
space and whether the people use masks or not

• Information about face mask use (or non-use) and 
occupancy can be obtained using only few minute time 
windows (5 – 10 min)

• The main source of prediction errors is in the case 
where mask use is mixed between the occupants

• Using CO2 levels together with other measurements 
provided by the smart plant sensors (e.g., temperature) 
significantly increases the performance of the model

Source: Zuniga, A., Motlagh, N. H., Flores, H., & Nurmi, P. 
(2022). Smart Plants: Low-Cost Solution for Monitoring Indoor 
Environments. IEEE Internet of Things Journal.
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Waste Recycling

Food WasteMarine Plastics

Source: Yin, Z., Olapade, M., Liyanage, M., Dar, F., 
Zuniga, A., Motlagh, N. H., Su, X., Tarkoma, S., Hui, P., 
Nurmi, P. & Flores, H. (2022). Toward City-Scale Litter 
Monitoring Using Autonomous Ground Vehicles. IEEE 
Pervasive Computing.

Source:Flores, H., Zuniga, A., Motlagh, N.H., Liyanage,
M., Passananti, M., Tarkoma, S., Youssef, M. and Nurmi
P., 2020, June. PENGUIN: aquatic plastic pollution sensin
g using AUVs. In DroNet@ MobiSys (pp. 5-1).

Source: Zuniga, A., Flores, H. and Nurmi, P., 2021. Ripe or Rotten?
Low-Cost Produce Quality Estimation Using Reflective Green Light
Sensing. IEEE Pervasive Computing, 20(3), pp.60-67.

Source: Rinta-Homi, M., Motlagh, N. H., Zuniga, A., Flores, H., & Nurmi,
P. (2021). How low can you go? performance trade-offs in low-resolution
thermal sensors for occupancy detection: A systematic evaluation.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 5(3), 1-22.

Building Energy Use
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• Air quality monitoring a critical challenge for future smart cities as majority of people are 
subjected to poor breathable air

• Pollution distributions can vary considerably even within small distances ➔ need for 
dense deployments of sensors

• Dense deployments only possible using inexpensive sensors ➔ need to combine 
different technologies to ensure high accuracy

• Sensor calibration a potential way to improve accuracy
• Ensuring model does not overfit critical
• Transfer learning and drift detection can help
• Diverse data selector helps to improve model generality and ensure robust performance

• Optimally also monitor indoor air quality, smart plants a potential infrastructure for 
achieving this

11/10/2022
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Fig. 1: Experimental Setup of Smart Plant Prototype.

tensive experiments that consider overall CO2 accumulation
estimation, occupancy detection, and face mask use detection
as representative examples of applications that can be imple-
mented by re-purposing smart plant sensors. We next describe
our experimental setup and measurements in detail.
Plants. Weconsider plants that arecommon and representative
of ornamental plants for indoor spaces: (i) coleus scutellari-
oides (common name: painted nettle, average height: 45cm,
hardiness: USDA Zone 10-11, water needs: moderate to high)
and (ii) hatiora salicornioides (common name: bottle cactus,
average height: 40cm, hardiness: USDA Zone 10-11, water
needs: low). Both plants are easy to grow and care, their size
facilitate placing them as potted desk plants. The greenery
was planted into separated pots (11.5cm x 11cm). The plants
covered the sensors used for monitoring to ensure a realistic
monitoring context, and the height of the plants from the
top of the pot was: coleus, scutellarioides: 22.5cm, hatiora
salicornioides: 26.5cm.
Apparatus. We built a simple prototype container that inte-
grates a Netatmo portable weather station with a plastic plant
container. The size of the weather station is 15.5cm x 4.5cm
and it uses a dedicated power supply via a Mini-USB in-
terface. WiFi connection is required for device configuration
and downloading the samples on a smartphone. We rely on
the weather station as it allows accessing the measurements
through a separate app and a web dashboard as most com-
mercial off-the-shelf plant containers do not currently offer
separate programmable access.
Sensors. Indoor air quality wasmeasured through theNetatmo
station. The weather station collects sensor measurements
for carbon dioxide (CO2, range: 0 to 5,000 ppm, accuracy:
± 50 ppm), temperature (T, range: 0°C to 50°C, accu-
racy: ± 0.3°C), barometric pressure (P, range: 260mbar
to 1.260mbar, accuracy: ± − 1mbar) and relative humidity
(RH%, range: 0 to 100%, accuracy: ± 3%) sensors. The
sensors were properly calibrated following the manufacturer’s
guidelines before each test.
Environment. The sensing area corresponds to a space with
dimensions 2.8m x 4.8m inside a studio (one room) apart-
ment; see Figure 1(a) for an illustration. The characteristics of
the area are representative of common living or office space.
The smart plant prototype comprises of the plants and the
weather station (see Figure 1(b)). The station was covered

and placed between the desk plant container (pot) providing
air quality measurements around theplants. The location of the
persons during thesampling included two placeswith different
distances relative to theplant: (i) awork desk at 80cm distance
(position 1) and (ii) a dining table at 380cm distance (position
2). We also separately characterise the levels of CO2 when
the room is empty. We denote the mean value of the space
when it is unoccupied as L i and consider this value as a
reference point. Between experiments, we include aminimum
break of 30 minutes and ensured the CO2 level stabilises
to the reference value L i before further measurements are
collected. Having a minimum gap of 30 minutes ensures that
themean CO2 level is within the reference valuewith a 97.5%
confidence level. We also characterised the time necessary to
reach the saturation point of CO2 produced by an individual,
Ls. In each experiment, the sensors sample measurements
every 5min over a 210min period. This includes an initial
30min period for verifying the CO2 levels are stable (i.e.,
correspond to L i ), a 120min saturation period during with
the CO2 levels increase from L i toLs, and a 60min grace
period at the end to verify that the CO2 decrease back to L i .
Measurements. Samples were collected in three different
experimental conditions. We first carry out an experiment
where we collect measurements separately from the smart
plant and the weather station for (i) a 1 day period with
one occupant following a normal daily routine (e.g., working,
eating, resting) at the apartment and (ii) a 6 hour period
with no occupants at the apartment. The experiment allows
estimating how well the sensors in the container capture air
quality variations compared to using a separate device that is
installed in theenvironment. Second, wecollect measurements
for a 3 hour period for each different testing place and one
occupant (male, 38 years old) and evaluate the variation in
the measurements due to distance. We repeat the experiment
considering two occupants (a male and a female, 38 years old
both) to evaluate the effect of having more than one person.
Finally, we analyse the effect of face masks by having one
or both participants wearing FFP2 face masks and collecting
measurements for a 3 hour period at testing position 2 (dining
table). Prior to starting the measurements, we always ensured
that the mean CO2 level matches the reference value L i over
a 30 minute period.

IV. RESULTS AND ANALYSIS
A. Characterising Measurements
Figure 2 contrasts the results when the sensor is integrated

with the plant container and when it is used separately to
measure CO2 level variation. Figure 2(a) presents the result
of Spearman’s ⇢s between different factors. The correlation
between the smart plant sensor and the dedicated sensor is
consistently significant. This holds especially for variable pairs
that are expected to be strongly correlated: CO2-temperature
(⇢ > 0.7) and barometric pressure-relative humidity (⇢ <
− 0.9). The decrease in correlation for some variables results
from different weather conditions during sampling (i.e., a
sunny day can increase the temperature in the sensing area
compared to a cloudy day). These results indicate that placing
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